Synthesis of tetracoordinated rhodium(I) complexes with chiral Shiff bases prepared from dehydroabietic acid

Aleksander G. Tolstikov,** Nikolay N. Karpyshev,* Yurii I. Amosov,* Olga V. Tolstikova,* Tatiana B. Khlebnikova,* Genrikh A. Tolstikov,* Victor I. Mamatyuk* and Georgii E. Salnikov*

^a G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. Fax: +7 3832 35 5756

New optically active Shiff bases 16–19 have been prepared from dehydroabietic acid 1 and have been used as ligands to synthesize tetracoordinated rhodium(I) complexes 20–27.

Synthesis of numerous pharmacologically valuable compounds is based on catalytic enantioselective reduction of prochiral ketones to optically active carbinols. Apart from direct hydrogenation, reactions of hydrosilylation and hydrogen transfer promoted by transition metal complexes with chiral P,N-donor ligands can be used to achieve the transformation under discussion. The use of tetra- and pentacoordinated rhodium(I)-and iridium(I)-complexes with Shiff bases, prepared by interaction between optically active amines and heteroaromatic aldehydes, provided high chemical and optical yields of the products of reduction of acetophenone and its homologues. A.5

Having defined the synthesis of chiral ligands as the key objective in the concept we are developing for the various uses of natural higher terpenoids, we notice that resin acids have been studied only slightly in this respect. The adducts of levopimaric acid with maleic anhydride and *p*-quinone were shown to be promising starting compounds for the synthesis of optically active phosphorus-containing ligands.^{6,7}

The purpose of the present work was to synthesize tetra-coordinated rhodium(I) complexes with chiral Shiff bases prepared from dehydroabietic acid 1.8 The treatment of its acyl chloride 2^9 with a saturated NH $_3$ solution in methanol at 0 °C produced amide 3 (92%), which was then reduced using a three-fold excess of LiAlH $_4$ to dehydroabietylamine 4 (75%). The latter compound is the same as that described in refs. 10 and 11.

The interaction of acyl chloride 2 with NaN_3 and thermal rearrangement of the intermediate azide 5 resulted in dehydroabietyl isocyanate 6, which was heated with concentrated hydrogen chloride in benzene to obtain amine hydrochloride 7 (65%).

Amine 11 was synthesized according to the following procedure (Scheme 2). Methyl dehydroabietate 8 was oxidized by $KMnO_4$ immobilized on Al_2O_3 to produce methyl-7-ketodehydroabietate 9, 12 which was readily transformed to the corresponding oxime 10 (75%) under the action of

RCOOH
$$\longrightarrow$$
 RCOCI $\stackrel{i}{\longrightarrow}$ RCONH₂ $\stackrel{ii}{\longrightarrow}$ RCH₂NH₂

1 2 3 4

 \downarrow iii

[RCON₃] \longrightarrow RNCO $\stackrel{iv}{\longrightarrow}$ RNH₂·HCl

5 6 7

Scheme 1 Reagents and conditions: i, NH₃, MeOH, 0 °C, 2 h; ii, LiAlH₄, Et₂O, 35 °C, 8 h; iii, NaN₃, Me₂CO, 0 °C, 1 h, then MePh, 100 °C, 1.5 h; iv, HCl, C_6H_6 , 80 °C, 5 h.

Scheme 2 Reagents and conditions: i, $KMnO_4/Al_2O_3$, Me_2CO , 20 °C, 12 h; ii, NH_2OH -HCl, AcONa, EtOH, 78 °C, 3 h; iii, H_2 , PtO₂, MeOH/HCl, 20 °C, 1.5 h, then Et_3N , Et_2O , 20 °C.

NH₂OH·HCl. This compound was hydrogenated over a PtO₂ catalyst in the presence of an equimolar quantity of HCl in methanol to produce a mixture of products, from which the target compound, methyl 7-aminodehydroabietate 11 (80%) was isolated after neutralization using column chromatography on SiO₂. A comparative analysis of ¹H and ¹³C NMR spectra recorded for hydrochloride 7 and amines 4, 11[†] suggested that the β -configuration of the NH₂ group in compound 11 was favoured. A similar example of the selective reduction of oximes is the preferential formation of β -amines in the catalytic (PtO₂) hydrogenation of some oximino-derivatives of monoterpenes and steroids. 13,14 Oxidation of methyl 12-bromodehydroabietate 12 with KMnO₄/Al₂O₃ in acetone gave methyl 12-bromo-7-ketodehydroabietate 13 (85%). Oxime 14 synthesized from this was hydrogenated over PtO2 under the same conditions as oxime 10. A mixture of products was obtained, among which methyl 7(β)-amino-12-bromodehydroabietate 15 (56%) was isolated.

The reaction between pyridine-2-carboxaldehyde and amine 4 was conducted in benzene in the presence of anhydrous Na₂SO₄ and gave azomethine 16 (67%).[‡] Chiral Shiff bases 17 (52%), 18 (60%) and 19 (54%) were synthesized in the same way from amines 7, 11 and 15, respectively.

Chiral rhodium(I) complexes 20–27 were prepared through interaction of ligands 16–19 with di- μ -chlorobis(cyclooctadiene)dirhodium and NaClO₄ or NaBF₄ in methanol.

Reduction of acetophenone to phenethyl alcohol by means of a hydrogen transfer reaction under the conditions given elsewhere⁴ was used as an example for the preliminary

^b Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russian Federation. Fax: +7 3832 35 4752

4
$$\stackrel{\stackrel{i}{\longrightarrow}}{\stackrel{\stackrel{i}{\longrightarrow}}{\stackrel{i}{\longrightarrow}}} N = C$$

11, 15 $\stackrel{\stackrel{i}{\longrightarrow}}{\stackrel{\stackrel{i}{\longrightarrow}}{\stackrel{i}{\longrightarrow}}} N = C$

18 $R = H$

19 $R = Br$

Scheme 3 Reagents and conditions: i, pyridine-2-carboxaldehyde, Na $_2SO_4,$ $C_6H_6,\,20$ °C, 2 h.

estimation of the catalytic activity and enantioselectivity of the new complexes. For example, at [cat.] = 1.6×10^{-4} M and ratios of [sub.]/[cat.] = 1000, [propan-2-ol]/[sub.] = 80, the transformation of acetophenone in boiling propan-2-ol catalysed by complex 20^{\ddagger} produced (+)-(R)-phenethyl alcohol at 50% conversion and a moderate optical yield (12%) {[α] $_D^{20}$ +5.1° (neat), lit., 4 [α] $_D^{20}$ +43.6° (neat)}.

[†] A Bruker DRX 500 spectrometer was used to record ¹H and ¹³C NMR spectra for compounds **7** and **11**, and a Bruker AC-200 for compounds **16** and **20**.

7: mp 250 °C (decomp.), $[\alpha]_D^{20} + 49.6^{\circ}$ (c 0.74, in CHCl₃); ¹H NMR (CDCl₃) δ : 1.19 (s, 3H, 18-H₃), 1.22 (d, 6H, 16-H₃, 17-H₃, J = 7 Hz), 1.46 (s, 3H, 19-H₃), 1.52 (m, 1H, 1-H_a, J_{hem} = 13 Hz, J = 13 Hz, J = 13 Hz, J = 4 Hz), 1.73 (m, 1H, 3-H_a), 1.76–1.87 (m, 3H, 2-H₂, 6-H_a), 1.99 (d, 1H, 5-H, J = 13 Hz), 2.19–2.30 (m, 3H, 3-H_b, 6-H_b, 1-H_b), 2.81 (septet, 1H, 15-H, J = 7 Hz), 2.93 (m, 1H, 7-H_a, J_{hem} = 17 Hz, J = 7 Hz), 3.00 (m, 1H, 7-H_b, J_{hem} = 17 Hz, J = 11.5 Hz, J = 6.5 Hz), 6.88 (d, 1H, 14-H, J = 1.5 Hz), 6.98 (dd, 1H, 12-H, J = 8 Hz, J = 1.5 Hz), 7.13 (d, 1H, 11-H, J = 8 Hz), 8.4 (br. s, 3H, NH₂·HCl); ¹³C NMR (CDCl₃) δ : 18.72, 18.77 (C-2, C-6), 19.89 (C-19), 23.83 (C-16, C-17), 24.74 (C-18), 29.74 (C-7), 33.38 (C-15), 37.18 (C-1), 37.86 (C-10), 37.89 (C-3), 48.49 (C-5), 58.44 (C-4), 124.01 (C-12), 124.35 (C-11), 126.77 (C-14), 134.10 (C-8), 145.05 (C-9), 145.87 (C-13).

11: oil, $[\alpha]_D^{18} + 13.9^{\circ}$ (c 1.50, in CHCl₃); ¹H NMR (CDCl₃) δ : 1.21 (d, 6H, 16-H₃, 17-H₃, J = 7 Hz), 1.24 and 1.26 (s, 6H, 18-H₃, 19-H₃), 1.31–1.93 (m, 8H, 1-H₂, 2-H₂, 3-H₂, 6-H₂), 2.25 (dd, 1H, 5-H, J = 12 Hz, J = 2 Hz), 2.84 (septet, 1H, 15-H, J = 7 Hz), 3.64 (s, 3 H, OCH₃), 4.01 (dd, 1H, 7-H₂, J = 10.5 Hz, J = 7.2 Hz), 7.03 (dd, 1H, 12-H, J = 8.0 Hz, J = 2.0 Hz), 7.13 (d, 1H, 11-H, J = 8.0 Hz), 7.28 (d, 1H, 14-H, J = 2.0 Hz); ¹³C NMR (CDCl₃) δ : 16.24 (C-19), 18.27 (C-2), 23.69, 23.84 (C-16, C-17), 25.41 (C-18), 33.21 (C-6), 33.47 (C-15), 36.32 (C-1)*, 37.31 (C-10), 37.90 (C-3)*, 43.77 (C-5), 47.12 (C-4), 51.47 (C-7), 51.77 (OCH₃), 123.98 (C-12)*, 124.92 (C-11), 125.14 (C-14)*, 138.24 (C-8), 146.14 (C-13), 146.55 (C-9), 178.54 (CO₂CH₃). Signal assignments follow the assumed formula.

[‡] **16**: mp 107–108 °C (C_2H_5OH), [α]₀²⁴ +29.1° (c 0.48, CHCl₃); ¹H NMR (CDCl₃) δ : 1.07 (s, 3H, 18-H₃), 1.24 (d, 6H, 16-H₃, 17-H₃, J = 7 Hz), 1.26 (s, 3H, 19-H₃), 1.32–2.05 (m, 8H, 1-H₂, 2-H₂, 3-H₂, 6-H₂), 2.30 (d, 1H, 5-H, J = 13 Hz), 2.85 (m, 3H, 7-H₂, 15-H), 3.45 (d, 1H, 20-H_a, J = 12 Hz), 3.55 (d, 1H, 20-H_b, J = 12 Hz), 6.88 (s, 1H, 14-H), 7.01 (d, 1H, 12-H, J = 8 Hz), 7.19 (d, 1H, 11-H, J = 8 Hz), 7.30 (m, 1H, 5'-H, J = 8.5 Hz, J = 2 Hz), 7.70 (t, 1H, 4'-H, J = 8 Hz), 8.02 (d, 1H, 3'-H, J = 8 Hz), 8.36 (s, 1H, 1'-H), 8.60 (d, 1H, 6'-H, J = 5 Hz).

20: mp 210–220 °C (decomp.); ¹H NMR (CDCl₃) δ : 1.15 (d, 6H, 16-H₃, 17-H₃, J = 7 Hz), 1.19 (s, 3H, 18-H₃), 1.21 (s, 3H, 19-H₃), 1.31–2.15 [m, 8H, 1-H₂, 2-H₂, 3-H₂, 6-H₂, 4H (1,5-COD)], 2.27 (m, 1H, 5-H), 2.38–2.62 [m, 4H (1,5-COD)], 2.72–3.05 (m, 3H, 7-H₂, 15-H), 3.15 (d, 1H, 20-H_a, J = 11 Hz), 3.41 (d, 1H, 20-H_b, J = 11 Hz), 4.45 [m, 4H (1,5-COD)], 6.88 (s, 1H, 14-H), 6.94 (d, 1H, 12-H, J = 8 Hz), 7.11 (d, 1H, 11-H, J = 8 Hz), 7.68 (m, 1H, 5'-H), 7.85 (d, 1H, 6'-H, J = 5 Hz), 8.09 (m, 1H, 4'-H), 8.20 (d, 1H, 3'-H, J = 7.5 Hz), 8.55 (s, 1H, 1'-H).

17, 18, 19 \longrightarrow [Rh(C₈H₁₂) 17, 18, 19]⁺An⁻
22–27

20, 22, 24, 26 An⁻ = ClO₄
21, 23, 25, 27 An⁻ = BF₄

Scheme 4 Reagents and conditions: i, $[Rh(C_8H_{12})Cl]_2$, NaClO₄ or NaBF₄, MeOH, 20 °C, 0.5 h.

A further communication concerned with a detailed study of the catalytic activity and enantioselectivity of new rhodium(I)complexes in hydrogen transfer reactions will follow.

Scheme 5 Reagents and conditions: i, PriOH, 20, 83 °C, 24 h.

This work was supported by the Russian Foundation for Basic Research (grant no. 96-15-97013).

References

- V. V. Dunina and I. P. Beletskaya, Zh. Org. Khim., 1992, 28, 1929 (Russ. J. Org. Chem., 1992, 28, 1547).
- 2 R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
- 3 P. Gamez, B. Dunjic and M. Lemaire, J. Org. Chem., 1996, 61, 5196.
- 4 G. Zassinovich, R. Bettela, G. Mestroni, N. Brescian-Pahor, S. Geremia and L.Randaccio, J. Organomet. Chem., 1989, 370, 187.
- 5 H. Brunner, B. Reiter and G. Riepl, Chem. Ber., 1984, 48, 4351.
- 6 A. G. Tolstikov, O. V. Tolstikova, T. B. Khlebnikova, K. I. Zamaraev, V. G. Kasradze, O. S. Kukovinets and L. V. Spirikhin, *Mendeleev Commun.*, 1996, 215.
- 7 A. G. Tolstikov, O. V. Tolstikova and K. I. Zamaraev, 2nd Conference on 'Modern Trends in Chemical Kinetics and Catalysis', Book of Abstracts, Part II, Novosibirsk, 1995, p. 399.
- 8 Le-Van-Thoi and A. Belloc, Industr. Plast. Mod., 1954, 6, 90.
- 9 H. H. Zeiss and W. B. Martin, J. Am. Chem. Soc., 1953, 75, 5935.
- 10 W. J. Gottstein and L. G. Cheney, J. Org. Chem., 1965, 30, 2072.
- 11 L. G. Cheney, US Patent 2, 585, 436, 1952 (Chem. Abstr., 1952, 46, 5269f).
- 12 G. F. Chernenko, E. N. Shmidt and B. A. Radbil, *Khim. Prir. Soedin.*, 1995, 229 [Chem. Nat. Compd. (Engl. Transl.), 1995, 31, 187].
- 13 R. Rausser, L. Weber, E. B. Hershberg and E. P. Olivetto, *J. Org. Chem.*, 1966, 31, 1342.
- 14 D. V. Banthorpe, D. G. Morris and C. A. Bunton, *J. Chem. Soc.*, (B), 1971, 687.

Received: Moscow, 27th November 1997 Cambridge, 8th January 1998; Com. 7/08971J